The Hippocampus Preorders Movements for Skilled Action Sequences

Plasticity in the subcortical motor basal ganglia–thalamo–cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider… Continue reading The Hippocampus Preorders Movements for Skilled Action Sequences

Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules

Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic… Continue reading Pre- and Postsynaptic MEF2C Promotes Experience-Dependent, Input-Specific Development of Cortical Layer 4 to Layer 2/3 Excitatory Synapses and Regulates Activity-Dependent Expression of Synaptic Cell Adhesion Molecules

Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to the onset of ALS cellular phenotypes

Al-Azzam et al. reveal that SmD1, a member of the SMN complex, regulates CHMP7 translocation. Reduced SmD1 expression in sporadic ALS leads to CHMP7 nuclear translocation, while overexpression prevents it, highlighting SmD1’s role in ALS pathogenesis.

Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex

Harmonics are an integral part of music, speech, and vocalizations of animals. Since the rest of the auditory environment is primarily made up of nonharmonic sounds, the auditory system needs to perceptually separate the above two kinds of sounds. In mice, harmonics, generally with two-tone components (two-tone harmonic complexes, TTHCs), form an important component of… Continue reading Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex

Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex

Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments… Continue reading Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex

Brain pathways that control dopamine release may influence motor control

Within the human brain, movement is coordinated by a brain region called the striatum, which sends instructions to motor neurons in the brain. Those instructions are conveyed by two pathways, one that initiates movement (“go”) and one that suppresses it (“no-go”). In a new study, MIT researchers have discovered an additional two pathways that arise… Continue reading Brain pathways that control dopamine release may influence motor control

Brain pathways that control dopamine release may influence motor control

Within the human brain, movement is coordinated by a brain region called the striatum, which sends instructions to motor neurons in the brain. Those instructions are conveyed by two pathways, one that initiates movement (“go”) and one that suppresses it (“no-go”). In a new study, MIT researchers have discovered an additional two pathways that arise… Continue reading Brain pathways that control dopamine release may influence motor control