Virus usurps alternative splicing to clear the decks for infection

image
  • Berget SM, Moore C, Sharp PA. Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A. 1977;74:3171–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow LT, Roberts JM, Lewis JB, Broker TR. A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell. 1977;11:819–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong S. SR proteins: binders, regulators, and connectors of RNA. Mol Cells. 2017;40:1–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135:851–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010;35:169–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iniguez LP, Hernandez G. The evolutionary relationship between alternative splicing and gene duplication. Front Genetics. 2017. https://doi.org/10.3389/fgene.2017.00014.

    Article 

    Google Scholar
     

  • Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011. https://doi.org/10.1101/cshperspect.a003707.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papasaikas P, Valcarcel J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci. 2016;41:33–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res. 2017;231:83–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2022;24:242–54.

    Article 
    PubMed 

    Google Scholar
     

  • Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001;17:100–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen SY, Li C, Jia X, Lai SJ. Sequence and evolutionary features for the alternatively spliced exons of eukaryotic genes. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20153834.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Redondo I, Planells B, Navarrete P, Gutierrez-Adan A. Role of alternative splicing in sex determination in vertebrates. Sex Dev. 2021;15:381–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18:437–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17:457–74.

    Article 
    PubMed 

    Google Scholar
     

  • Sehrawat S, Garcia-Blanco MA. RNA virus infections and their effect on host alternative splicing. Antiviral Res. 2023;210:105503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67:6365–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoltzfus CM. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication. Adv Virus Res. 2009. https://doi.org/10.1016/S0065-3527(09)74001-1.

    Article 
    PubMed 

    Google Scholar
     

  • Westergren Jakobsson A, Segerman B, Wallerman O, Lind SB, Zhao H, Rubin CJ, Pettersson U, Akusjarvi G. The human adenovirus type 2 transcriptome: an amazing complexity of alternatively spliced mRNAs. J Virol. 2021. https://doi.org/10.1128/JVI.01869-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berk AJ, Sharp PA. Structure of the adenovirus 2 early mRNAs. Cell. 1978;14:695–711.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graves D, Akkerman N, Bachus S, Pelka P. Differential splicing of human adenovirus 5 E1A RNA expressed in cis versus in trans. J Virol. 2021. https://doi.org/10.1128/JVI.02081-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Himmelspach M, Cavaloc Y, Chebli K, Stévenin J, Gattoni R. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing. RNA. 1995;1:794–806.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt P, Gattoni R, Keohavong P, Stevenin J. Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell. 1987;50:31–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gattoni R, Chebli K, Himmelspach M, Stevenin J. Modulation of alternative splicing of adenoviral E1A transcripts: factors involved in the early-to-late transition. Genes Dev. 1991;5:1847–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dauksaite V, Akusjärvi G. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5’-splice site selection. Biochem J. 2004;381:343–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell. 1992;68:365–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol. 1997;138:225–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang WJ, Wu JY. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol Cell Biol. 1996;16:5400–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourgeois CF, Popielarz M, Hildwein G, Stevenin J. Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5’ or 3’ splice site activation. Mol Cell Biol. 1999;19:7347–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreivi JP, Akusjärvi G. Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation. Nucleic Acids Res. 1994;22:332–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreivi JP, Zerivitz K, Akusjarvi G. Sequences involved in the control of adenovirus L1 alternative RNA splicing. Nucleic Acids Res. 1991;19:2379–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gustin KE, Imperiale MJ. Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J Virol. 1998;72:7860–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • San Martin C. Latest insights on adenovirus structure and assembly. Viruses. 2012;4:847–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevins JR, Wilson MC. Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature. 1981;290:113–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delsert C, Morin N, Klessig DF. cis-acting elements and a trans-acting factor affecting alternative splicing of adenovirus L1 transcripts. Mol Cell Biol. 1989;9:4364–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauksaite V, Akusjarvi G. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J Biol Chem. 2002;277:12579–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang TS, Nilsson CE, Punga T, Akusjarvi G. Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Rep. 2002;3:1088–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature. 1998;393:185–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tormanen H, Backstrom E, Carlsson A, Akusjarvi G. L4–33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem. 2006;281:36510–7.

    Article 
    PubMed 

    Google Scholar
     

  • Biasiotto R, Akusjarvi G. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci. 2015;16:2893–912.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sommer S, Salditt-Georgieff M, Bachenheimer S, Darnell JE, Furuichi Y, Morgan M, Shatkin AJ. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 1976;3:749–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun. 2020;11:6016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price AM, Steinbock RT, Di C, Hayer KE, Li Y, Herrmann C, Parenti NA, Whelan JN, Weiss SR, Weitzman MD. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res. 2022;50:1201–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin KH, Kim RH, Kang MK, Kim RH, Kim SG, Lim PK, Yochim JM, Baluda MA, Park NH. p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair (Amst). 2007;6:830–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansson C, Schwartz S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol. 2013;11:239–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu C, Kajitani N, Schwartz S. Splicing and polyadenylation of human papillomavirus type 16 mRNAs. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18020366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson C, Somberg M, Li X, Backstrom Winquist E, Fay J, Ryan F, Pim D, Banks L, Schwartz S. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 2012;31:3212–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao CY, Zheng YJ, Jonsson J, Cui XX, Yu HR, Wu CJ, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res. 2022;50:3867–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang S, Tao M, McCoy JP Jr, Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 2006;80:4249–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shally M, Alloul N, Jackman A, Muller M, Gissmann L, Sherman L. The E6 variant proteins E6I–E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. Virus Res. 1996;42:81–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci. 2004;11:278–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, Archambault J. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86:94–107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paget-Bailly P, Meznad K, Bruyère D, Perrard J, Herfs M, Jung AC, Mougin C, Prétet J-L, Baguet A. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep. 2019;9:5938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajiro M, Jia R, Zhang LF, Liu XF, Zheng ZM. Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0046412.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajiro M, Tang S, Doorbar J, Zheng ZM. Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol. 2016;90:9138–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng YJ, Jonsson J, Hao CY, Chaghervand SS, Cui XX, Kajitani N, Gong LJ, Wu CJ, Schwartz S. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 inhibit splicing to human papillomavirus 16 splice site SA409 through a UAG-containing sequence in the E7 coding region. J Virol. 2020. https://doi.org/10.1128/JVI.01509-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarlane M, MacDonald AI, Stevenson A, Graham SV. Human papillomavirus 16 oncoprotein expression is controlled by the cellular splicing factor SRSF2 (SC35). J Virol. 2015;89:5276–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho JSY, Zhu ZY, Marazzi I. Unconventional viral gene expression mechanisms as therapeutic targets. Nature. 2021;593:362–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142:902–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao S, Liu XL, Yu MR, Li J, Jia XJ, Bi YH, Sun L, Gao GF, Liu WJ. A nuclear export signal in the matrix protein of influenza A virus is required for efficient virus replication. J Virol. 2012;86:4883–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson D, Lamb RA. The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. J Gen Virol. 2008;89:3097–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Path. 2012;8:e1002998.

    Article 
    CAS 

    Google Scholar
     

  • Shih SR, Krug RM. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J. 1996;15:5415–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih SR, Nemeroff ME, Krug RM. The choice of alternative 5’ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A. 1995;92:6324–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson MG, Munoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, Garcia-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun. 2018;9:2407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li QC, Jiang ZM, Ren SN, Guo H, Song ZM, Chen SN, Gao XT, Meng FF, Zhu JD, Liu LT, et al. SRSF5-mediated alternative splicing of M gene is essential for influenza A virus replication: a host-directed target against influenza virus. Adv Sci. 2022. https://doi.org/10.1002/advs.202203088.

    Article 

    Google Scholar
     

  • Robb NC, Fodor E. The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein. J Gen Virol. 2012;93:113–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muraki Y, Furukawa T, Kohno Y, Matsuzaki Y, Takashita E, Sugawara K, Hongo S. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs. J Virol. 2010;84:1957–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng M, Wang P, Song W, Lau SY, Liu S, Huang X, Mok BW, Liu YC, Chen Y, Yuen KY, Chen H. An A14U substitution in the 3’ noncoding region of the M segment of viral RNA supports replication of influenza virus with an NS1 deletion by modulating alternative splicing of M segment mRNAs. J Virol. 2015;89:10273–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calderon BM, Danzy S, Delima GK, Jacobs NT, Ganti K, Hockman MR, Conn GL, Lowen AC, Steel J. Dysregulation of M segment gene expression contributes to influenza A virus host restriction. PLoS Pathog. 2019;15:e1007892.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. Curr Opin Virol. 2015;12:1–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with less. MBio. 2014;5:e0070-e00014.

    Article 

    Google Scholar
     

  • Gong W, He X, Huang K, Zhang Y, Li C, Yang Y, Zou Z, Jin M. Interaction of NEP with G protein pathway suppressor 2 facilitates influenza A virus replication by weakening the inhibition of GPS2 to RNA synthesis and ribonucleoprotein assembly. J Virol. 2021. https://doi.org/10.1128/JVI.00008-21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Liu M, Huang J, Zeng Q, Zhu Q, Xu S, Chen H. H1N1 influenza A virus protein NS2 inhibits innate immune response by targeting IRF7. Viruses. 2022. https://doi.org/10.3390/v14112411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung YT, Kuan CY, Liao GR, Albrecht RA, Tseng YY, Hsu YC, Ou SC, Hsu WL. A variant NS1 protein from H5N2 avian influenza virus suppresses PKR activation and promotes replication and virulence in mammals. Emerg Microbes Infect. 2022;11:2291–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garaigorta U, Ortin J. Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res. 2007;35:4573–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994;13:704–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso-Caplen FV, Nemeroff ME, Qiu Y, Krug RM. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA. Genes Dev. 1992;6:255–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso-Caplen FV, Krug RM. Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol Cell Biol. 1991;11:1092–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, Zhang Y, Fraser NW, Wu D, Zhou J. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep. 2016;6:28075.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, et al. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 2016;12:e1005841.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Su M, Sun PP, Guo WP, Wang CY, Wang JL, Wang H, Zhang Q, Du LY, Xie GC. Global profiling of the alternative splicing landscape reveals transcriptomic diversity during the early phase of enterovirus 71 infection. Virology. 2020;548:213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, Zhou J. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J. 2017;14:217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava R, Daulatabad SV, Srivastava M, Janga SC. Role of SARS-CoV-2 in altering the RNA-binding protein and miRNA-directed post-transcriptional regulatory networks in humans. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197090.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabozzi G, Oler AJ, Liu P, Chen Y, Mindaye S, Dolan MA, Kenney H, Gucek M, Zhu J, Rabin RL, Subbarao K. Strand-specific dual RNA sequencing of bronchial epithelial cells infected with influenza A/H3N2 viruses reveals splicing of gene segment 6 and novel host-virus interactions. J Virol. 2018. https://doi.org/10.1128/JVI.00518-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batra R, Stark TJ, Clark AE, Belzile JP, Wheeler EC, Yee BA, Huang H, Gelboin-Burkhart C, Huelga SC, Aigner S, et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat Struct Mol Biol. 2016;23:1101–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus mu2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res. 2022;50:5263–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood KA, Eadsforth MA, Newman WG, O’Keefe RT. The Role of the U5 snRNP in genetic disorders and cancer. Front Genet. 2021;12:636620.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettit Kneller EL, Connor JH, Lyles DS. hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus. J Virol. 2009;83:770–80.

    Article 
    PubMed 

    Google Scholar
     

  • Redondo N, Madan V, Alvarez E, Carrasco L. Impact of vesicular stomatitis virus M proteins on different cellular functions. PLoS ONE. 2015;10:e0131137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song J, Quan R, Wang D, Liu J. Seneca valley virus 3C (pro) cleaves heterogeneous nuclear ribonucleoprotein K to facilitate viral replication. Front Microbiol. 2022;13:945443.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol. 2013;87:2390–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YC, Kuo RL, Lin JY, Huang PN, Huang Y, Liu H, Arnold JJ, Chen SJ, Wang RY, Cameron CE, Shih SR. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Pathog. 2014;10:e1004199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, et al. SARS-CoV-2 disrupts splicing, translation, and protein Trafficking to suppress host defenses. Cell. 2020;183(1325–1339):e1321.


    Google Scholar
     

  • Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antiviral Res. 2018;159:13–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014;6:404–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonenfant G, Meng R, Shotwell C, Badu P, Payne AF, Ciota AT, Sammons MA, Berglund JA, Pager CT. Asian zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses-Basel. 2020. https://doi.org/10.3390/v12050510.

    Article 

    Google Scholar
     

  • Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem. 2019;294:16282–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang J, Hong Z, Sun B, Guo Z, Wang C, Zhu J. The alternatively spliced isoforms of key molecules in the cGAS-STING signaling pathway. Front Immunol. 2021;12:771744.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu D, Shang G, Li J, Lu Y, Bai XC, Zhang X. Activation of STING by targeting a pocket in the transmembrane domain. Nature. 2022;604:557–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567:389–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, et al. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. 2018;46:4054–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, Lu M, Chen X. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. J Immunol. 2014;192:1162–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Feng L, Luo WW, Lei CQ, Li M, Shu HB. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov. 2021;7:46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng W, Shi M, Han M, Zhong J, Li Z, Li W, Hu Y, Yan L, Wang J, He Y, et al. Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK1. J Biol Chem. 2008;283:35590–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu YW, Zhang J, Wu XM, Cao L, Nie P, Chang MX. TANK-Binding Kinase 1 (TBK1) Isoforms negatively regulate type I interferon induction by inhibiting TBK1-IRF3 interaction and IRF3 phosphorylation. Front Immunol. 2018;9:84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Wu XM, Hu YW, Chang MX. A novel transcript isoform of TBK1 negatively regulates type I IFN production by promoting proteasomal degradation of TBK1 and lysosomal degradation of IRF3. Front Immunol. 2020;11:580864.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter MJ, Look DC, Tidwell RM, Roswit WT, Holtzman MJ. Targeted inhibition of interferon-gamma-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1. J Biol Chem. 1997;272:28582–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Z, Marendy E, Wang YD, Yuan J, Sample JT, Swaminathan S. Multiple roles of Epstein-Barr virus SM protein in lytic replication. J Virol. 2007;81:4058–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma D, Swaminathan S. Epstein-Barr virus SM protein functions as an alternative splicing factor. J Virol. 2008;82:7180–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haller O, Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic. 2002;3:710–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ku C-C, Che X-B, Reichelt M, Rajamani J, Schaap-Nutt A, Huang K-J, Sommer MH, Chen Y-S, Chen Y-Y, Arvin AM. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol Cell Biol. 2011;89:173–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Graf L, Chen T, Liao Q, Bai T, Petric PP, Zhu W, Yang L, Dong J, Lu J, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373:918–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply