AI Summary
Scientists have discovered a new way in which a genetic mutation contributes to the development of acute myeloid leukemia (AML). The mutation affects the NPM1 gene, which is involved in autophagy, a process that allows cells to recycle their own structures. This discovery could lead to new treatments for AML.
In a recent study, scientists led by Professor Stefan Müller from Goethe University’s Institute of Biochemistry II investigated a specific form of blood cancer known as acute myeloid leukemia, or AML. The disease mainly occurs in adulthood and often ends up being fatal for older patients. In about a third of AML patients, the cancer cells’ genetic material has a characteristic mutation that affects the so-called NPM1 gene, which contains the building instructions for a protein of the same name.
While it was already known that the mutated NPM1 variant (abbreviated as NPM1c) is an important factor in the development of leukemia, “together with an interdisciplinary team consisting of various Goethe University research groups, we have now discovered a new way in which the NPM1c gene variant does this,” Müller explains. According to this, the altered protein intervenes in autophagy, an important cell process that consists of a metabolic pathway through which the cell recycles its own structures. On the one hand, this “self-digestion” serves to remove defective molecules. “On the other, it also enables the cell to meet its need for important building blocks, including in the event of a nutrient deficiency or increased cell proliferation, which is characteristic of cancer cells,” explains PhD student Hannah Mende, the study’s first author.
During autophagy, the cell initially produces a kind of waste bag, the autophagosome, into which it packs those cellular components that are to be broken down and recycled if necessary. This waste bag is then transported