Nebraska researchers are converting plant wastes into antimicrobial agents that could help prevent pathogenic infections and death while significantly lowering the cost of antimicrobial treatments and being a boon to the bioeconomy.
Antibiotic resistance is a significant public health concern. The United Nations has estimated that drug-resistant diseases could be responsible for 10 million deaths a year by 2050.
According to the Centers for Disease Control and Prevention, to handle antibiotic resistance, the United States spends about $55 billion every year. The challenge is not only the need of new kinds of antibiotic drugs, but we also need effective antimicrobial coatings and disinfecting solutions. This is because many drug-resistant infections originate from touch surfaces, health care equipment, and implants in hospitals as well as wastewater systems.
Scientists are working to develop new types of antimicrobials to address the problem and have had some success with synthetic materials, which are effective but often costly—and their use and disposal could harm the environment.
“If we can design low-cost, highly effective antimicrobials using green and eco-friendly materials, we can get the best of both worlds,” said Shudipto Dishari, Ross McCollum associate professor of chemical and biomolecular engineering.
With that mission, Dishari’s research is investigating how lignin, a naturally abundant polymer and a major element of plant cell walls, could be