Strength and durability of indirect protection against SARS-CoV-2 infection through vaccine and infection-acquired immunity

Abstract

Early investigation revealed a reduced risk of SARS-CoV-2 infection among social contacts of COVID-19 vaccinated individuals, referred to as indirect protection. However, indirect protection from SARS-CoV-2 infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both vaccine-derived and infection-acquired immunity independently yield indirect protection to close social contacts with key differences in their strength and waning. Analyzing anonymized SARS-CoV-2 surveillance data from 9,625 residents in California state prisons from December 2021 to December 2022, we find that vaccine-derived indirect protection against Omicron SARS-CoV-2 infection is strongest within three months of COVID-19 vaccination [30% (95% confidence interval: 20–38%)] with subsequent modest protection. Infection-acquired immunity provides 38% (24–50%) indirect protection for 6 months after SARS-CoV-2 infection, with moderate indirect protection persisting for over one year. Variant-targeted vaccines (bivalent formulation including Omicron subvariants BA.4/BA.5) confer strong indirect protection for at least three months [40% (3–63%)]. These results demonstrate that both vaccine-derived and infection-acquired immunity can reduce SARS-CoV-2 transmission which is important for understanding long-term transmission dynamics and can guide public health intervention, especially in high-risk environments such as prisons.

Introduction

Transmission dynamics of SARS-CoV-2 are driven in part by population immunity generated from vaccine-derived and infection-acquired immunity, which

Continue reading on Nature

Leave a Reply