AI-based method predicts progression of autoimmune diseases

Autoimmune diseases, where the immune system mistakenly attacks the body’s own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies in the blood. However, in some people, these symptoms may resolve before culminating in the full disease stage.

Knowing who may progress along the disease pathway is critical for early diagnosis and intervention, improved treatment and better disease management, according to a team led by researchers from the Penn State College of Medicine that has developed a new method to predict the progression of autoimmune disease among those with preclinical symptoms. The team used artificial intelligence (AI) to analyze data from electronic health records and large genetic studies of people with autoimmune disease to come up with a risk prediction score. When compared to existing models, this methodology was between 25% and 1,000% more accurate in determining whose symptoms would move to advanced disease.

The research team published their findings this week (Jan. 2) in the journal Nature Communications.

“By targeting a more relevant population – people with family history or who are experiencing early symptoms – we can use machine learning to identify patients with the highest risk for disease and then identify suitable therapeutics that may be able to slow down the progression of the disease. It’s a lot more meaningful and actionable information,” said Dajiang Liu, distinguished professor, vice chair for research and director of artificial intelligence and biomedical informatics at the Penn State College of Medicine and

Leave a Reply