Malaria, particularly in its severe forms, remains a global health and economic burden. It causes the deaths of more than 600,000 people every year – most of them African children under five. In a new study, published in the journal Nature, researchers from EMBL Barcelona, the University of Texas, the University of Copenhagen, and The Scripps Research Institute have discovered human antibodies that can recognize and target some of the proteins that cause severe malaria. This breakthrough could pave the way for future vaccines or anti-malaria treatments.
Severe malaria is caused by the parasite Plasmodium falciparum, which infects and modifies red blood cells. These modifications can make the red blood cells stick to the walls of tiny blood vessels in the brain. This results in impaired blood flow and blockage of small blood vessels, which causes brain swelling and can develop into cerebral malaria.
The blockage of blood flow is primarily driven by a family of about 60 virulent proteins, called PfEMP1, present on the surface of infected red blood cells. Some types of PfEMP1 proteins can attach to another human protein called EPCR on the surface of cells lining blood vessels. This interaction damages blood vessels and is closely linked to the development of life-threatening complications.
The researchers knew that when children in Africa grow older, they progressively develop immunity, and teenagers and adults rarely suffer from lethal disease complications. This protection was thought to be mediated by antibodies that target PfEMP1.
PfEMP1 is a highly variable protein