AI Summary
Researchers at Houston Methodist are part of a national consortium working on a vaccine for common and destructive strains of herpesviruses that infect a majority of Americans, leading to various health issues. The project, funded by ARPA-H, aims to develop prophylactic and therapeutic vaccines against β- and γ- herpesviruses, including human cytomegalovirus and Epstein-Barr virus. This research could transform vaccine development and have significant public health implications.
Houston Methodist researchers will be part of a national consortium funded by an up to $49 million award from the U.S. Government’s Advanced Research Projects Agency for Health (ARPA-H) to develop a vaccine against two of the most common and destructive strains of herpesviruses that latently infect a majority of Americans and can lead to acute infections, multiple forms of cancer, autoimmune disease and birth defects.
The award is part of ARPA-H’s Antigens Predicted for Broad Viral Efficacy through Computational Experimentation (APECx) program and will fund the America’s SHIELD project to develop prophylactic and therapeutic vaccines against the β- and γ- herpesviruses. Through the SHIELD (Strategic Herpesvirus Immune Evasion and Latency Defense) program, researchers will develop an integrated computational toolkit for antigen engineering with the potential to transform vaccine development against a myriad of pathogens.
These two herpesvirus subfamilies include human cytomegalovirus and Epstein-Barr virus, respectively, which clinically impact the largest proportion of the U.S. population, dormantly infecting Americans at an annual cost of at least $4 billion.
Epstein-Barr causes significant disease in adolescents and young adults as the cause of mono and also can later cause lymphomas, gastric and nasopharyngeal cancer, multiple sclerosis and diseases like non-Hodgkin’s lymphoma and certain leukemias in transplant patients. The human cytomegalovirus is the leading cause of congenital birth defects, as in-utero infection can result in permanent hearing loss or more profound neurodevelopmental impairments that disproportionately impact socioeconomically disadvantaged children.
Jimmy D. Gollihar, Ph.D., who is a protein engineer, synthetic biologist and head