Salt can boost antitumor responses of T cells

AI Summary

The study explores how sodium (Na+) ions in tumor microenvironments can enhance the activation of cytotoxic T cells, potentially boosting antitumor responses. Previous research indicates that extracellular ions like potassium (K+) impact T-cell functions, but the effects of sodium ions on cytotoxic T cells are less understood. The researchers used ICP-OES to measure ion concentrations in breast cancer tissues and found that high NaCl treatment increased gene expression related to sodium chloride exposure. This study suggests new avenues for cancer treatment by targeting T-cell responses.

Sodium in tumor microenvironments found to heighten T-cell activation, suggesting new cancer treatment avenues Study: Sodium chloride in the tumor microenvironment enhances T cell metabolic fitness and cytotoxicity. Image Credit: snezhana k/Shutterstock.com

In a recent study published in Nature Immunology, researchers investigated the direct influence of sodium (Na+) ions on the cytotoxic cluster of differentiation 8 (CD8)-expressing T cells and hence on antitumor cytotoxicity.

Background

The metabolic status of cytotoxic T cells or lymphocytes controls antitumor immunity. These cells are sensitive to the tumor microenvironment (TME). The TME can inhibit the anticancer immune responses by reducing T cell invasion, decreasing T cellular maintenance, and lowering effector activities. Studies indicate that extracellular ions such as potassium (K+) may influence T-cell functions.

K+ ions are abundant within the necrotic TME, inhibiting T-cell receptor (TCR)-driven effector functions while increasing stemness and multipotency. Elevated sodium ion concentrations stimulate T helper 17 (Th17) differentiation and increase self-regulatory cytokine expression. However, the effects of sodium ion concentrations on cytotoxic T-cell-mediated antitumor immunity are unclear.

About the study

The researchers investigated the effect of sodium ion concentrations on cytotoxic T-cell activity and antitumor immunological responses.

Inductively coupled plasma optical emission spectrometry (ICP-OES) assessed K+ and Na+ concentrations in breast cancer and adjacent tissues. Researchers investigated the transcriptome imprint of sodium chloride exposure on cytotoxic T cells. They found that high NaCl treatment dramatically increased differentially expressed genes (DEGs), resulting in the sodium-chloride signature. They next investigated the enrichment of this signature in tumor tissues

Leave a Reply