Biological condensates affect cellular behavior on a global scale

AI Summary

This article discusses how biological condensates, which are structures inside cells formed without a membrane, can affect cellular behavior on a global scale. Previous research focused on their immediate impacts, but a new study shows that they can modulate internal electrochemistry and influence traits such as antibiotic resistance.

Most biological chemistry research has historically focused on the obvious cogs of machinery that keep life moving. Folding proteins, genetic activity and electrical signaling pathways are the easiest targets for finding irregularities that lead to disease.

Recent research, however, has pointed to a different type of cellular structure that may play an equally important role. Called biological condensates, these structures exist because of differences in density, like oil droplets floating in water, and form compartments inside of cells without needing the physical boundary of a membrane.

Previous studies have shown that these blobs can separate or trap together certain proteins and molecules, either hindering or promoting their activity. They have also revealed that these structures provide an alternative energy source that might power some aspects of biological chemistry.

These results, however, have focused on impacts created in the immediate vicinity of the condensates themselves. Researchers had not yet identified ways in which they might affect biochemistry far from their physical structures.

Now, in a new study published September 10 in the journal Cell, researchers from Duke University and the Washington University in St. Louis have shown that the formation of biological condensates affects cellular activity far beyond their immediate vicinity. The results show that they may be a previously missing mechanism by which cells modulate their internal electrochemistry. And those internal controls, in turn, affect the cellular membrane, which allows these unassuming blobs to affect global traits and outcomes such as resistance to antibiotics.

Our research shows that

Leave a Reply