AI Summary
This study explores how changes in brain network interconnectivity dynamics during challenging listening situations can explain individual differences in metacognitive abilities related to listening behavior. The research involved analyzing the reconfiguration of auditory-control networks in participants undergoing task functional magnetic resonance imaging. Results showed that interconnectivity between auditory and attentional-control networks play a key role in shaping metacognitive differences in response confidence during auditory tasks. These findings shed light on the neural mechanisms underlying adaptive listening behavior and the importance of cortical network interactions in metacognitive assessment.
Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported by modular reconfiguration of auditory–control networks in a sample of N = 40 participants (13 males) who underwent resting-state and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained an average accuracy of ~70% but yielded considerable interindividual differences in listeners’ response speed and reported confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory, cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one’s own perception in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable metacognitive differences between individuals in adaptive listening behavior.