Fc-Fc interactions and immune inhibitory effects of IgG4: implications for anti-PD-1 immunotherapies

AI Summary

This study explores the Fc-Fc interactions and immune inhibitory effects of IgG4 in the context of anti-PD-1 immunotherapies. The research compares the effects of IgG4 and Fc-null IgG1 frameworks on immune responses, detailing their impact on immune cell populations and tumor growth in mouse models. The results suggest that Fc-null IgG1 may be a safer alternative for anti-PD-1 immunotherapies, as it avoids adverse Fc-Fc interactions and immune inhibitory effects associated with IgG4. This study enhances our understanding of immunotherapy resistance and contributes to the development of safer cancer treatments.

Background

The majority of anti-programmed cell-death 1 (PD-1) monoclonal antibodies (mAbs) use S228P mutation IgG4 as the structural basis to avoid the activation of immune cells or complement. However, little attention has been paid to the Fc–Fc interactions between IgG4 and other IgG Fc fragments that could result in adverse effects. Fc-null IgG1 framework is a potential safer alternative to avoid the undesirable Fc–Fc interactions and Fc receptor binding derived effects observed with IgG4. This study provides a comprehensive evaluation of anti-PD-1 mAbs of these two frameworks.

Methods

Trastuzumab and rituximab (both IgG1), wildtype IgG1 and IgG4 were immobilized on nitrocellulose membranes, coated to microplates and biosensor chips, and bound to tumor cells as targets for Fc–Fc interactions. Wildtype IgG1 and IgG4, anti-PD-1 mAb nivolumab (IgG4 S228P), penpulimab (Fc-null IgG1), and tislelizumab (Fc-null IgG4 S228P-R409K) were assessed for their binding reactions to the immobilized IgG proteins and quantitative kinetic data were obtained. To evaluate the effects of the two anti-PD-1 mAbs on immune responses mediated by trastuzumab and rituximab in the context of combination therapy, we employed classic immune models for antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement dependent cytotoxicity. Tumor-bearing mouse models, both wildtype and humanized, were used for in vivo investigation. Furthermore, we also examined the effects of IgG1 and IgG4 on diverse immune cell populations

Results

Experiments demonstrated that wildtype IgG4 and nivolumab bound to immobilized IgG through Fc–Fc interactions, diminishing antibody-dependent cell-mediated cytotoxicity and phagocytosis reactions. Quantitative analysis of kinetic parameters suggests that nivolumab and wildtype IgG4 exhibit comparable binding affinities to immobilized IgG1 in both non-denatured and denatured states. IgG4 exerted inhibitory effects on various immune cell types. Wildtype IgG4 and nivolumab both promoted tumor growth in wildtype mouse models. Conversely, wildtype IgG1, penpulimab, and tislelizumab did not show similar adverse effects.

Conclusions

Fc-null IgG1 represents a safer choice for anti-PD-1 immunotherapies by avoiding both the adverse Fc–Fc interactions and Fc-related immune inhibitory effects of IgG4. Fc-null IgG4 S228P-R409K and Fc-null IgG1 displayed similar structural properties and benefits. This study contributes to the understanding of immunotherapy resistance and the advancement of safer immune therapies for cancer.

Leave a Reply