Compound found to inhibit influenza virus replication by targeting host enzyme

AI Summary

Prof. Hiroki Kato and his team at the University of Bonn have received a grant to develop a compound that inhibits a protein involved in the replication of influenza viruses. Their goal is to find inhibitors that can be used in clinical trials to stop the spread of the virus. The virus uses mechanisms like "cap snatching" to avoid detection by the immune system.

How can the propagation of influenza viruses be stopped? For a new approach in the therapy of influenza infections, Prof. Hiroki Kato from the Institute of Cardiovascular Immunology at the University Hospital Bonn (UKB) and the Cluster of Excellence ImmunoSensation2 of the University of Bonn receives an Open Philanthropy grant of 2.2 million US dollars. Together with his team, he found a compound that inhibits the body’s own methyltransferase MTr1 and thus prevents the replication of influenza viruses. The funded project now aims to identify further MTr1 inhibitors with influenza-inhibiting activity that could be considered for clinical trials in the near future.

When a virus enters our body, it binds to the host cell and introduces its genetic information in form of ribonucleic acid (RNA). Using these blueprints, the host cell is now forced to produce numerous new viruses. “This is because viruses have evolved various mechanisms, including modifications of the viral genetic material, to successfully replicate in the host,” explains Prof. Hiroki Kato from the Institute of Cardiovascular Immunology at UKB, who is a member of the ImmunoSensation2 cluster of excellence at the University of Bonn.

One of these mechanisms is so-called “cap snatching,” which avoids recognition by the innate immune system and thus enables efficient viral replication. To be able to distinguish foreign from its own genetic information, the human cell marks, for example, its own RNA for the immune system with a molecular cap at the end of the RNA chain. RNA without this cap is

Leave a Reply