Led by Director Chang Sukbok, scientists from the Center for Catalytic Hydrocarbon Functionalizations within the Institute for Basic Science (IBS) have made a significant advancement in the synthesis of β-lactam scaffolds, which are structural components frequently found in essential antibiotics such as penicillins and carbapenems. This breakthrough overcomes challenges in β-lactam synthesis to promise streamlined pathways for drug development.
The core chemical structure that makes up penicillins is a four-membered cyclic amide scaffold called chiral β-lactam, which is also frequently found in other types of major antibiotics like carbapenems and cephalosporins. The high-value potential of chiral β-lactam has been recognized in modern science given such relevance to the pharmaceutical products, leading to many efforts to synthesize them using readily available raw chemicals.
Back in 2019, the IBS group unveiled a catalytic reaction that allowed access to chiral γ-lactams, five-membered amide structures that differ in the ring size from β-lactams. They managed to