Wang G, Zha Z, Huang P, Sun H, Huang Y, He M, Chen T, Lin L, Chen Z, Kong Z, Que Y, Li T, Gu Y, Yu H, Zhang J, Zheng Q, Chen Y, Li S, Xia N. Structures of pseudorabies virus capsids. Nat Commun. 2022;13:1533–44. https://doi.org/10.1038/s41467-022-29250-3.
JYS LEE MRW. 1979. A review of pseudorabies (Aujeszky’s Disease) in pigs. Can Vet J 20:65–69.
Klupp BG. Pseudorabies virus infections. Pathogens. 2021;10:719–20. https://doi.org/10.3390/pathogens10060719.
G.R.B. Skinner AA, J.A. Davies. The infrequency of transmission of herpesviruses between humans and animals; postulation of an unrecognised protective host mechanism. Comp Immunol Microbiol Infect Dis. 2001;25:255–69. https://doi.org/10.1016/s0147-9571(01)00014-5.
Cramer SD, Campbell GA, Njaa BL, Morgan SE, Smith SK 2nd, McLin WRt, Brodersen BW, Wise AG, Scherba G, Langohr IM, Maes RK. Pseudorabies virus infection in Oklahoma hunting dogs. J Vet Diagn Investig. 2011;23:915–23. https://doi.org/10.1177/1040638711416628.
By HJFIELDTJH. The pathogenesis of pseudorabies in mice following peripheral inoculation. J gen Virol. 1974;23:145–57. https://doi.org/10.1099/0022-1317-23-2-145.
Brittle EE, Reynolds AE, Enquist LW. Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol. 2004;78:12951–63. https://doi.org/10.1128/JVI.78.23.12951-12963.2004.
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev. 2005;69:462–500. https://doi.org/10.1128/MMBR.69.3.462-500.2005.
Wang H, Zeng L, Li W, Wang S. Teaching neuroimage: human encephalitis caused by pseudorabies virus infection. Neurology. 2022;99:311–2. https://doi.org/10.1212/WNL.0000000000200882.
Carola V, Viscomi MT. Microglia. Semin Cell Dev Biol. 2019;94:94–5. https://doi.org/10.1016/j.semcdb.2019.07.003.
Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke Vasc Neurol. 2016;1:52–8. https://doi.org/10.1136/svn-2016-000012.
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72. https://doi.org/10.1083/jcb.201709069.
Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2017;36:583–603. https://doi.org/10.15252/embj.201694591
Ferro A, Sheeler C, Rosa JG, Cvetanovic M. Role of microglia in Ataxias. J Mol Biol. 2019;431:1792–804. https://doi.org/10.1016/j.jmb.2019.01.016.
Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.
Al Mamun A, Chauhan A, Qi S, Ngwa C, Xu Y, Sharmeen R, Hazen AL, Li J, Aronowski JA, McCullough LD, Liu F. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci USA. 2020;117:1742–52. https://doi.org/10.1073/pnas.1914742117.
Lokensgard JR, Hu S, Sheng W, vanOijen M, Cox D, Cheeran M-CJ, Peterson PK. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neuro Virol 2001. https://doi.org/10.1080/13550280152403254
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383:2255–73. https://doi.org/10.1056/NEJMra2026131.
Soltani Khaboushan A, Yazdanpanah N, Rezaei N. Neuroinflammation and proinflammatory cytokines in epileptogenesis. Mol Neurobiol. 2022;59:1724–43. https://doi.org/10.1007/s12035-022-02725-6.
Fekete R, Cserep C, Lenart N, Toth K, Orsolits B, Martinecz B, Mehes E, Szabo B, Nemeth V, Gonci B, Sperlagh B, Boldogkoi Z, Kittel A, Baranyi M, Ferenczi S, Kovacs K, Szalay G, Rozsa B, Webb C, Kovacs GG, Hortobagyi T, West BL, Kornyei Z, Denes A. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol. 2018;136:461–82. https://doi.org/10.1007/s00401-018-1885-0.
Zheng H, Liu CC, Atagi Y, Chen XF, Jia L, Yang L, He W, Zhang X, Kang SS, Rosenberry TL, Fryer JD, Zhang YW, Xu H, Bu G. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging. 2016;42:132–41. https://doi.org/10.1016/j.neurobiolaging.2016.03.004.
Okuzono Y, Sakuma H, Miyakawa S, Ifuku M, Lee J, Das D, Banerjee A, Zhao Y, Yamamoto K, Ando T, Sato S. Reduced TREM2 activation in microglia of patients with Alzheimer’s disease. FEBS Open Biol. 2021;11:3063–80. https://doi.org/10.1002/2211-5463.13300.
Painter MM, Atagi Y, Liu CC, Rademakers R, Xu H, Fryer JD, Bu G. TREM2 in CNS homeostasis and neurodegenerative disease. Mol Neurodegener. 2015;10:43–52. https://doi.org/10.1186/s13024-015-0040-9.
Chen H, Fan J, Sun X, Xie R, Song W, Zhao Y, Yang T, Cao Y, Yu S, Wei C, Hua L, Wang X, Chen H, Peng Z, Cheng G, Wu B, Zhai S-L. Characterization of pseudorabies virus associated with severe respiratory and neuronal signs in old pigs. Transbound Emerg Dis. 2023;2023:1–12. https://doi.org/10.1155/2023/8855739.
Du X, Gao F, Chen S, Botchway BOA, Amin N, Hu Z, Fang M. Combinational pretreatment of colony-stimulating factor 1 receptor inhibitor and triptolide upregulates BDNF-Akt and autophagic pathways to improve cerebral ischemia. Mediat Inflamm. 2020;2020:8796103. https://doi.org/10.1155/2020/8796103.
Du X, Xu Y, Chen S, Fang M. Inhibited CSF1R alleviates ischemia injury via inhibition of microglia M1 polarization and NLRP3 pathway. Neural Plast. 2020;2020:8825954. https://doi.org/10.1155/2020/8825954.
Hwang JW, Lee NK, Yang JH, Son HJ, Bang SI, Chang JW, Na DL. A comparison of immune responses exerted following syngeneic, allogeneic, and xenogeneic transplantation of mesenchymal stem cells into the mouse brain. Int J Mol Sci. 2020;21:3052–69. https://doi.org/10.3390/ijms21093052.
Prins RM, Liau LM. Immunology and immunotherapy in neurosurgical disease. Neurosurgery 2003;53:144–52; discussion 52–3. https://doi.org/10.1227/01.neu.0000068865.34216.3a
Verpoest S, Redant V, Cay AB, Favoreel H, De Regge N. Reduced virulence of a pseudorabies virus isolate from wild boar origin in domestic pigs correlates with hampered visceral spread and age-dependent reduced neuroinvasive capacity. Virulence. 2018;9:149–62. https://doi.org/10.1080/21505594.2017.1368941.
Laval K, Vernejoul JB, Van Cleemput J, Koyuncu OO, Enquist LW. Virulent pseudorabies virus infection induces a specific and lethal systemic inflammatory response in mice. J Virol. 2018;92:e01614-e1618. https://doi.org/10.1128/JVI.01614-18.
Laval K, Enquist LW. The neuropathic itch caused by pseudorabies virus. Pathogens. 2020;9:254–81. https://doi.org/10.3390/pathogens9040254.
Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014;5:e01476–14. https://doi.org/10.1128/mBio.01476-14
Liu H, Qiu K, He Q, Lei Q, Lu W. Mechanisms of blood-brain barrier disruption in herpes simplex encephalitis. J Neuroimmune Pharmacol. 2019;14:157–72. https://doi.org/10.1007/s11481-018-9821-6.
Michael BD, Bricio-Moreno L, Sorensen EW, Miyabe Y, Lian J, Solomon T, Kurt-Jones EA, Luster AD. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood-brain barrier permeability in viral encephalitis. Cell Rep 2020;32:108150. https://doi.org/10.1016/j.celrep.2020.108150
Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Investig. 2005;85:597–607. https://doi.org/10.1038/labinvest.3700251.
Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis. 2006;23:87–96. https://doi.org/10.1016/j.nbd.2006.02.006.
Sherchan P, Huang L, Wang Y, Akyol O, Tang J, Zhang JH. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis. 2016;85:164–73. https://doi.org/10.1016/j.nbd.2015.11.003.
Lim H, Noh JR, Kim YH, Hwang JH, Kim KS, Choi DH, Go MJ, Han SS, Oh WK, Lee CH. Anti-atherogenic effect of Humulus japonicus in apolipoprotein E-deficient mice. Int J Mol Med. 2016;38:1101–10. https://doi.org/10.3892/ijmm.2016.2727.
Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis. 2016;96:248–60. https://doi.org/10.1016/j.nbd.2016.09.013.
Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9:2124–38. https://doi.org/10.1016/j.celrep.2014.11.018.
Falsig J, Julius C, Margalith I, Schwarz P, Heppner FL, Aguzzi A. A versatile prion replication assay in organotypic brain slices. Nat Neurosci. 2008;11:109–17. https://doi.org/10.1038/nn2028.
Zhu C, Herrmann US, Falsig J, Abakumova I, Nuvolone M, Schwarz P, Frauenknecht K, Rushing EJ, Aguzzi A. A neuroprotective role for microglia in prion diseases. J Exp Med. 2016;213:1047–59. https://doi.org/10.1084/jem.20151000.